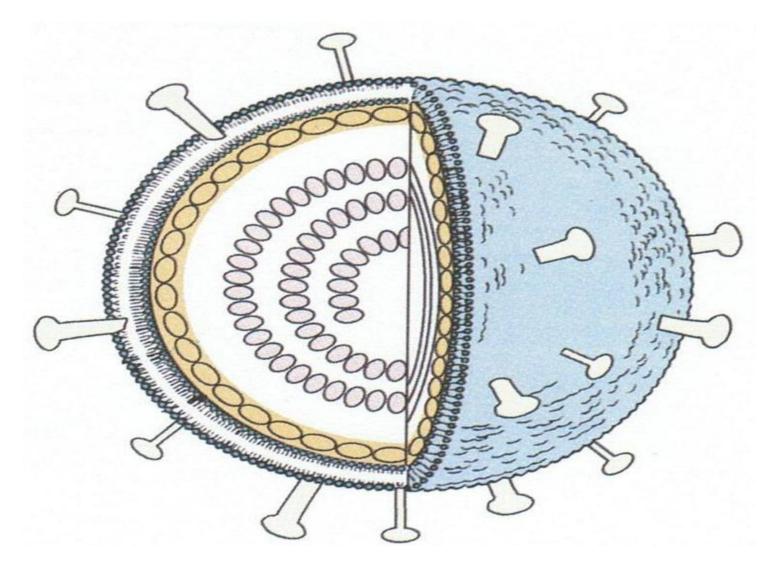

ПРОБЛЕМЫ ПРОФИЛАКТИКИ БОЛЕЗНИ НЬЮКАСЛА ВПРОМЫШЛЕННОМ ПТИЦЕВОДСТВЕ

Катрич Александр Валерьевич

Ведущий ветеринарный врач-консультант по птицеводству ГК ВЕТПРОМ



ЭКСКУРС

НБ – болезнь Ньюкасла

Вирус РНК содержащий

Семейство Paramyxoviridae

ИСТОРИЧЕСКАЯ СПРАВКА

Первые зарегистрированные случаи возникновения заболевания имеющие схожие признаки фиксируются в начале 20 века, во время старта развития промышленного производства в различных регионах мира

Болезнь имела множество наименований Наиболее полно описана и клинически изучена была в 30х годах в Великобритании И уже после этого закрепилась под названием болезнь Нью Касла

Подходы к решению проблемы ND в промышленном птицеводстве:

1. БИОЗАЩИТА

2. ВАКЦИНАЦИЯ

3. СОБЛЮДЕНИЕ ЗООТЕХНОЛОГИЧЕСКИХ НОРМАТИВОВ

ВСЕ ОТВЕТЫ НА ПОВЕРХНОСТИ

HN белок на поверхности оболочки вируса гликопротеин обеспечивает прикрепление к клетке хозяина

Белок слияния более мелкий гликопротеин — полипептид F обеспечивает внедрение вируса в клетку реципиента

И внутри цепочка нуклеотидов от информации которая на них записана, зависит патогенность вируса НБ

ДЕЛЕНИЕ ПО КЛАССАМ

Парамиксовирус птиц тип 1

Филогенетические отношения Класс основан на длине нуклеотидной последовательности

Класс I

длинная цепочка (более длинная, чем в классе II) т.е. чем длиннее цепочка, тем меньше угроза для организма

Класс II

I апатогенный Avinew, Ulster, VH, C2, B1 II ленто-, мезо-генные Lasota, HB1, Texas GB III IV Hertz V VI велогенный VII VIII IX X

ДЕЛЕНИЕ ПО КЛАССАМ

1. Висцеротропный велогенный

Высокая смертность, геморрагические поражения кишечника

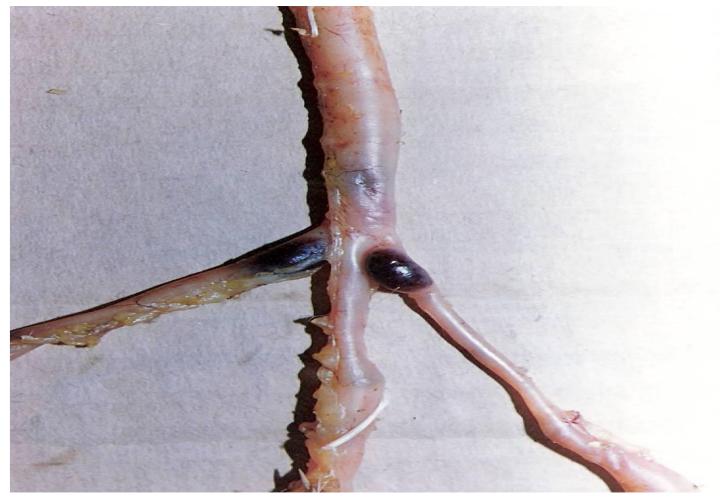
2. Нейротропный велогенный

Высокая смертность, респираторные и нервные признаки

3. Мезогенный

Низкая смертность, респираторные, возможны нервные признаки

4. Лентогенный


Умеренная или субклиническая респираторная инфекция

5. Асимптоматический кишечный

Субклиническое течение, слабовыраженные патизменения, отсутствие давления на респираторные органы

Поражение кишечника велогенная форма

Как правило, патология редко фиксируется на вакцинированной птице

Велогенная форма нейротропная

Респираторная клиника

ИММУНИТЕТ

•Активный иммунитет:

- Клеточно-опосредованный иммунитет:
 уже через 2-3 дня после вакцинации
- Гуморальный иммунитет наличие антител против полипептидов HN и F

Раннее выявление антител начинается с 6-10 дней вакцинации, пик ответа приходится на интервал 3-4 недели

•Пассивный иммунитет:

-Насколько защищает материнский иммунитет? -Иммуносупрессия: вирусы ИББ и CAV

VII генотип, и его особенности

Исторически зафиксирован впервые во время 3 панзоотии в период 1970-1980 охватившей страны Ближнего востока и Малой Азии

В дальнейшем проникшей на Балканы и прилегающие регионы Европы

Клинически заболевание значимо отличалось от проявляемых раньше вспышек НБ. Характеризовалось большим уклоном в сторону поражения нервной системы и кишечника, с не значительными респираторными симптомами иногда с полным их отсутствием. Последнее связано больше с сопутствующими респираторными заболеваниями

«Плохие» новости от VII генотипа ND

Полевые штаммы VII генотипа ND вызывают высокую смертность, имеют значение ICPI>0,7

Полевые штаммы VII генотипа ND вызывают заболевания среди большего количества видов птиц в том числе и гусиных. Тем самым имеют более широкий резервуар в природе в сравнении с другими генотипами ND

Полевые штаммы VII генотипа вызывают заболевание и значительную гибель среди вакцинированного поголовья. Поскольку антигенная структура возбудителя сформирована в результате накопления точечных мутаций под длительным давлением вакцинных антител при низком качестве вакцинаций. Что привело к антигенному дрейфу!

ВАКЦИНАЦИЯ ПРОТИВ НБ

ЗАДАЧА - создание группового иммунитета, достаточного для предотвращения заболевания

В процессе формирования иммунитета с применением любых вакцин имеются риски связанные с финансовыми потерями

В одних случаях они высоки, в других они уравновешены программами вакцинации

ВЕКТОРНЫЕ ВАКЦИНЫ

Т Включен только ген белка слияния - F

Отсутствует защита против гена полипептида HN

живые вакцины

Делятся на пневмотропные, энтеротропные, апатогенные, лентогенные

Интерферируют с МАТ

Интерферируют с вакцинными штаммами ИБК

ИНАКТИВИРОВАННЫЕ ВАКЦИНЫ

Создают гуморальную защиту без виремии, вакцинным штаммом

Не интерферируют с МАТ

Ш Не интерферируют с вакцинными вирусами ИБК

Создают максимальную защиту через 5 недель после применения

КЛАССИФИКАЦИЯ

Вирусный штамм. ІСРІ Классификация

V4 = 0.0 Апатогенный энтеротропный Hitchner B1 = 0.2 Лентогенный F = 0.25 Лентогенный VG/GA = 0.35 Лентогенный Clone LaSota = 0.36 Лентогенный LaSota = 0.4 Лентогенный Roakin = 1.45 Мезогенный

Чем выше вирулентность тем мощнее выражены реакции в организме в момент виремии, что определяет осложнения в виде как побочных реакций так и сопутствующих (фоновых проблем)

Наиболее проблематична профилактика НБ в условиях наличия «полевой» инфекций APV, а так же на стадах не стерильных по ORT и MG

При рассмотрении модели профилактики НБ, очень часто используют программы защиты от данного заболевания без объективного анализа существующих дополнительных респираторных заболеваний, как правило стационарно закрепившихся в промышленных производственных комплексов

Риски проявления респираторных реакций очень высоки первые 5-8 дней после проведения вакцинации против НБ

Как правило, многие предприятия предпочитают использовать вакцины с респиратропным штаммом для вакцинации НБ Такой подход достаточно обоснован, объективно надёжной и быстро создаваемой местной защитой на уровне клеточного иммунитета, переходящего в гуморальную защиту после ревакцинации

Именно из-за надёжной первичной репликации вакцинного вируса в респираторном тракте обеспечивается эффективная защита против НБ

И даже в случае не полного покрытия поголовья вакцинацией, происходит самовакцинация поголовья от голов получивших полную дозу вакцины

К сожалению такая модель порочна для организма птиц даже без присутствия осложняющих факторов в виду растянутости создания групповой защиты против НБ, и проявления «роллинг-реакции»

Не трудно представить, во что выливается общее состояние поголовья: аэросакулиты, отёки лёгких.

В дальнейшем фибринозные полисерозиты с банальным диагнозом Колибактериоз

К сожалению, такая картина является не самым плохим результатом. Гораздо хуже, когда мы имеем дополнительные респираторные заболевания: MG, ORT, APV

Фоновые проблемы «живущих» на предприятиях с отсутствием принципа технологии «пусто-занято», с переуплотнённым поголовьем, нарушениями параметров микроклимата. Тогда всё гораздо хуже!

Общая картина заболевания птицы настолько стёрта, что не даёт возможности выработать общий подход к ситуации, и заставляет работать против основного фактора, лежащего на самой поверхности — «верхушки айсберга»

Очень часто «верхушку айсберга» называют Колибактериоз.

Борьба с таким диагнозом напоминает битву Дон-Кихота с ветряной мельницей, где расходуются значительные финансы, и несутся потери в виде недополученных голов и среднесуточных привесов

ЦЕЛЬ ВАКЦИНАЦИИ ПРОТИВ НБ, так было когда – то...

1. Создание защитных антител в титре обеспечивающем защиту птицы

2. Обеспечить минимум поствакцинальных осложнений в виде вторичных инфекций

3. Максимально сохранить целостность респираторного тракта (он птице ещё понадобится)

ИНТРАЦЕРЕБРАЛЬНЫЙ ПАТОГЕННЫЙ ИНДЕКС

Вирусный штамм	ICPI	Классификация
V4	0.0	Апатогенный энтеротропный
PHY.LMV.42	0.0-0.16	Апатогенный энтеротропный
Ulster 2C	0.0 (0.14–0.23)	Апатогенный энтеротропный
VH	0.15	Апатогенный энтеротропный
Hitchner B1	0.2	Лентогенный
F	0.25	Лентогенный
VG/GA	0.35	Лентогенный
Clone LaSota	0.36	Лентогенный
LaSota	0.4	Лентогенный
Mukteswar	1.4	Мезогенный
Komarov	1.41	Мезогенный
Roakin	1.45	Мезогенный

ПРОГРАММА ПРОФИЛАКТИКИ НБ

Наилучшая программа профилактики НБ должна исходить:

✓ из оценки эффективности применения вакцин +

У экономический эффект

То есть минимизация респираторных симптомокомплексов

Вводные данные для анализа программы профилактики

- 1. Исследования факторов риска мониторинг заболеваний НБ, MG, APV, ORT, ИБК, ИББ, CAV
- 2. Понимание факторов усложняющих ситуацию нарушения параметров микроклимата, переуплотнение поголовья, отсутствие принципа «пусто занято»

Почему энтеротропные, апатогенные живые вакцины против НБ

- 1. Значительно меньше интерферируют с вакцинными вирусами ИБК
- 2. В меньшей степени повреждают эпителий респираторного тракта
- 3. После применения создают необходимую защиту для предотвращения заболевания

ВЫРАБОТКА ПРОГРАММЫ ИСХОДЯ ИЗ НАЛИЧИЯ ФАКТОРОВ РИСКА:

1. Программа для зон не подверженным рискам НБ и ИБК

0 день	В1 (ВИР 106 НБ) + ВИР 111	СПРЕЙ
11-15 день	VH+H120 (ВИР 220)	СПРЕЙ (выпаивание)

ВЫРАБОТКА ПРОГРАММЫ ИСХОДЯ ИЗ НАЛИЧИЯ ФАКТОРОВ РИСКА:

2. Программа для зон подверженным рискам НБ вызываемой VII ND

0 день	ВИР 106 Вирсин 121 Л	СПРЕЙ инъекция
10 день	ВИР 105 ВИР 116	СПРЕЙ Выпаивание
20 день	ВИР 105 ВИР 116	Спрей Выпаивание

ТАЙНА СПРЕЙ ВАКЦИНАЦИИ или «Размер имеет значение»

Размер капли 170 мкм и выше минимизация поствакцинальных реакций и проявления респираторного синдрома бактериальной этиологии

Размер капли 50-75 мкм, более глубокое проникновение вакцинного штамма в дыхательные пути более быстрые и сильные поствакцинальных реакции,

плотнее клеточная защита

Риски респираторного синдрома бактериальной этиологии!

КОМПРОМИСС СТРАТЕГИЙ ИБК и НБ

В зависимости от сложившейся эпизоотической ситуации Вакцина ВИР 106, на 0 день жизни может применяться совместно с одной из вакцин против ИБК: ВИР 111, ВИР 117, ВИР 118

Более сложны конструкции с профилактикой вариантных форм ИБК одновременно с классической на 0 день жизни, что должно соответствовать текущим эпизоотиям, угрозам заноса инфекции из комплектующих хозяйств.

АССОРТИМЕНТ ВАКЦИН ГК ВЕТПРОМ

BIOVAC

BUP 105 бивая сухая вакцина против

болезни Ньюкасла птиц

SCHOOL VIII

Изгетовлена из вмбриенов СПФ