

Влияние ксенобиотиков и глифосатов на микробиом и продуктивность птицы.

НПК «БИОТРОФ»

Новосибирск, 06. 06. 2024 г.

КАК ПРОИСХОДИТ МЕТАБОЛИЗМ КСЕНОБИОТИКОВ

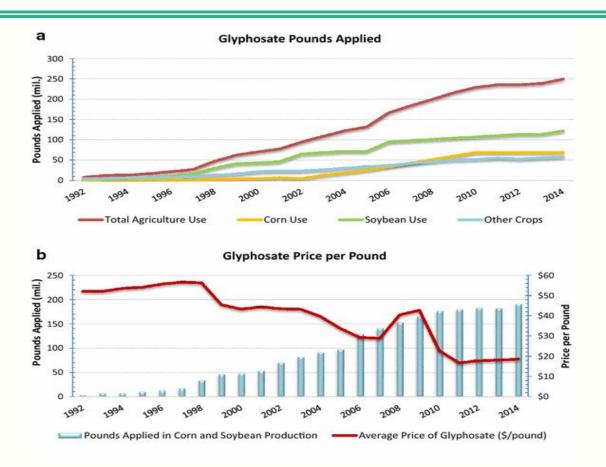
Микрофлора В ПРОСВЕТЕ КИШЕЧНИКА

У печени главная роль в метаболизме ксенобиотиков, но другие и органы принимают участие.

Ферменты реакций биотрансформации встречаются во многих тканях тела - почки, легкие, кишечник, гол. мозг и кожа.

Первая линия - легко всасываемые ксенобиотики проходят через клетки кишечника, где они могут быть обрабатываться ферментами хозяина перед транспортировкой в печень через воротную вену*

*Ilett et al. Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol Ther. 1990;46(1):67-93, Doherty and Charman, 2002; Ding and Kaminsky, 2003, Wang et al., 2003).


GLYPHOSATE

Глифоса́т (N-(фосфонометил)-глицин
Неселективный системный гербицид для борьбы
с одно- и многолетними сорняками.

- Первое место в мире по объему производства по сравнению с остальными гербицидами.
- Ученый компании Monsanto Джон Франц открыл вещество «глифосат» с сильными системными гербицидными свойствами в 1970 году.

- Уничтожение сорняков
- уход за парами
- No-till
- Предуборочная десикация

Рост производства и использования глифосата

Benbrook C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental sciences Europe, 28(1), 3. https://doi.org/10.1186/s12302-016-0070-0

Рост производства и использования глифосата

- Глифосат относительно недорогой гербицид;
- Широкое распространение ГМ-растений, технология выращивания которых предполагает регулярное применение глифосата и его накопление в продукции растениеводства
- Появление устойчивых сорняков ведет к повышению дозировок и частоты обработок

Международное агентство по исследованию рака отнесло глифосат к группе 2A - «вероятно, канцерогенный для человека» в 2015 году

Механизм действия глифосата

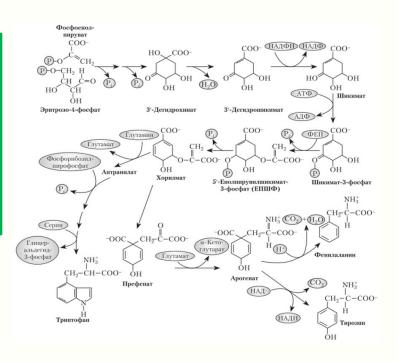
Основная реакция синтеза белка в растениях

глюкоза +
шикимат-3-фосфат +
фосфоенолпируват фермент шикимат-3-фосфат

ГЛИФОСАТ

ароматические аминокислоты

фермент-5-енолпирувилшикимат-3-фосфатсинтаза


Ароматические аминокислоты: фенилаланин, тирозин и триптофан

Значение шикиматного пути

Есть шикиматный путь

- Бактерии
- Археи
- Грибы
- Растения
- Простейшие

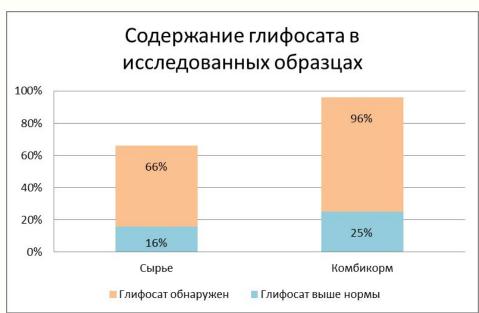
Глифосат влияет на микробиом

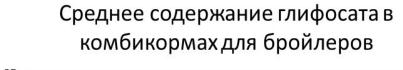
Нет шикиматного пути

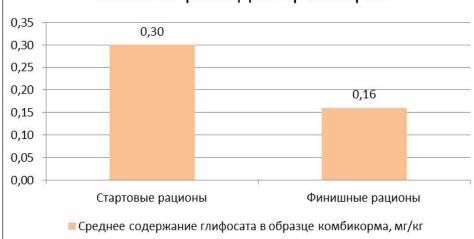
- Некоторые бактерии
- Животные

ПДК глифосата

МДУ глифосата в России По ТР ТС 015/2011 «О безопасности зерна»


Наименование действующего вещества	МДУ/ВМДУ в продукции, мг/кг
Глифосат	Подсолнечник(семена), кукуруза (зерно) – 0,3. Зерно хлебных злаков – 3,0. Рис, соя (бобы) – 0,15.


МДУ глифосата в России


По СанПиН 1.2.3685-21 "Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания"

Наименование действующего вещества МДУ/ВМДУ в продукции, мг/кг Глифосат N-(фосфонометил)глицин рис - 0,15; зерно хлебных злаков - 20,0; кукуруза (зерно) - 1,0; соя (бобы) - 20,0; подсолнечник (семена) - 7,0; рапс (зерно) - 10,0; горох (сухой) - 5,0; хлопчатник (семена) - 40,0; субпродукты млекопитающих - 5,0; отруби пшеничные, не обработанные - 20,0; подсолнечник (масло), рапс (масло) - 0,1; соя (масло) - 0,05

Уровень глифосата в комбикормах

Преимущественно образцы сырья поступали из центральных и южных регионов России, где выращивается подсолнечник и соя. При этом большая часть образцов комбикормов поступила из центральных и северо-западных регионов, где высока вероятность попадания импортной ГМ-сои, что может объяснять более высокую частоту обнаружения глифосата в комбикорме

Глифосат в кормах замедляет рост бройлеров

Показатели послеубойной массы и длины органов пищеварительной системы бройлеров кросса «Росс 308» в конце эксперимента в ответ на скармливание глифосата, (M±m, n=10)

Показатели		Гру	Группы			
	Control I	Experimental II	Experimental	Experimental		
			III	IV		
Масса печени, г	43.2±1.62	39.8±1.95	37.5±2.01*	44.1±1.73		
Длина кишечника, см	224.3±8.01	219.8±11.98	202.9±6.91*	216.2±6.80		
Масса кишечника, г	62.5±1.72	59.7±1.48	56.8±1.64*	61.4±3.58		
Масса тонкого кишечника, г	48.6±1.26	47.1±1.29	44.6±5.11	48.5±2.78		
Масса толстого кишечника, г	13.9±1.16	12.6±0.64	12.2±0.98	13.0±1.17		
Масса желудка, г	27.7±0.89	26.2±1.08	26.3±0.97	26.4±1.26		
Длина желудка, см	9.4±0.23	9.5±0.93	9.5 ± 0.18	9.6±0.24		

Тенденция к сокращению размеров и массы органов пищеварения

Глифосат в кормах замедляет рост бройлеров

Control I	Experimental II	Experimental III	Experimental IV
Основной рацион – полнорационный комбикорм ПК-5, ПК-6	Основной рацион – полнорационный комбикорм ПК-5, ПК-6	Основной рацион – полнорационный комбикорм ПК-5, ПК-6	Основной рацион – полнорационный комбикорм ПК-5, ПК-6
	+ глифосат 10 мг/кг	+ глифосат 20 мг/кг	+ глифосат 100 мг/кг

Антибиотикорезистентность – проблема из решаемых?

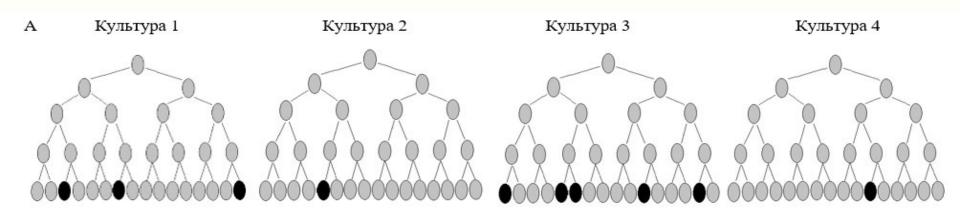
Основы генетики устойчивости бактерий к антибиотикам

«Бактерии живут под ободком унитаза, а размножаться ходят в полость рта»

Устойчивость к антибиотикам

Как она возникает у бактерий?

- 1.При контакте с антибиотиком?
- 2. Предсуществует в популяции бактерий, то есть возникает спонтанно вне зависимости от контакта с антибиотиком?


Неожиданное открытие

Еще в 1991 году было сказано: «Очень интересно то, что бактерии из тел, замороженных 140 лет тому назад, оказались устойчивыми к тем антибиотикам, которые были открыты на 100 лет позднее. Таким образом, в бактериях существует специфическая химическая потребность в устойчивости»

Боуден, 1991

Флуктуационный тест (Лурия и Дельбрюк)

- ▶ Если устойчивость к фагу (антибиотику) происходит при контакте с фагом (антибиотиком), то n/N = a, где n число устойчивых клеток, N общее количество клеток, тогда a постоянная величина,
- Если устойчивость к фагу (антибиотику) возникает в результате мутации, то n/N = ga, где g – количество генераций

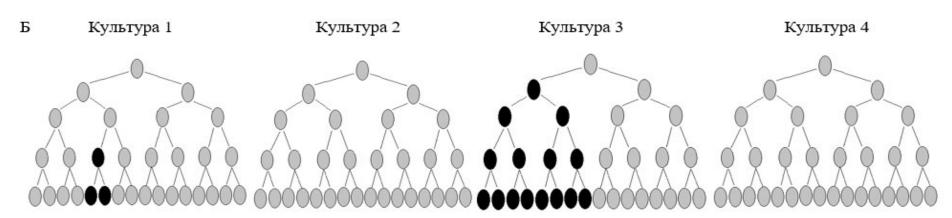
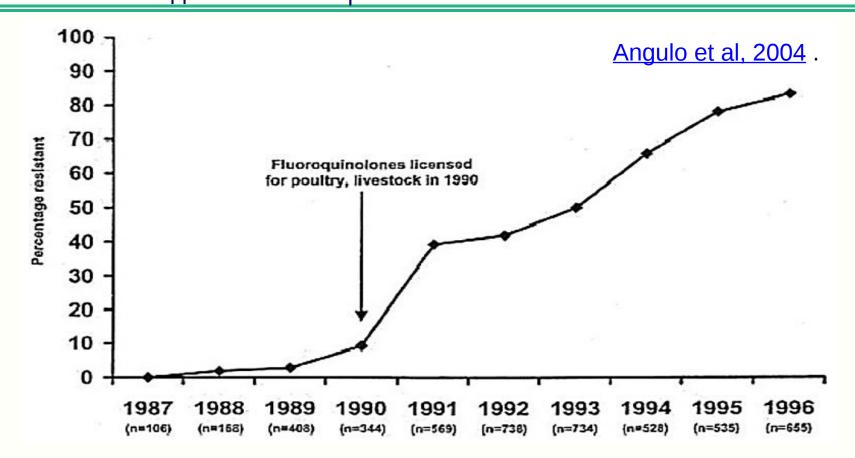


Рис. 6-4. Схема, показывающая появление десяти мутантов Ton^r E. coli в четырех параллельных культурах Ton^s E coli A. Распределение мутантов, которого следует ожидать в том случае, если признак Ton^s индуцируется у 0,15 бактерий Ton^s после их контакта с фагом T1.


Б. Распределение мутантов, которое следует ожидать в том случае, если признак Топ[‡]появляется в результате спонтанной мутации с вероятностью 0,033 на одну клетку Топ³ за время одной генерации.

Устойчивость к антибиотикам

- 1. Устойчивые к антибиотикам бактерии «предсуществуют» в популяциях бактерий
- 2. Их численность возрастает при добавлении антибиотиков в среду
- 3. Их численность снижается при прекращении дачи антибиотика, поскольку устойчивость тяжелое бремя

Устойчивые к антибиотикам мутанты возникают независимо от применения антибиотиков на птицефабрике вследствие спонтанного мутационного процесса

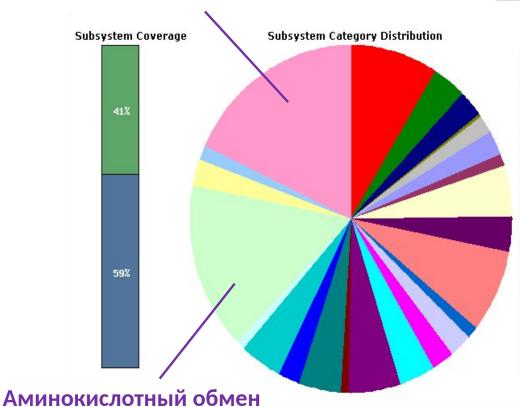
Тенденции распространенности резистентности к фторхинолонам в клинических изолятах *Campylobacter jejeuni*, в Испании, исследованные на резистентность с 1987 по 1996 г.

«Близ есть, при дверех» - о явлении Антихриста С.А.Нилус, 1911

Проблема антибиотикоустойчивости сложнее, чем кажется:

- ▶ 1. АНТИбИОТИКОУСТОЙЧИВЫЕ МУТАНТЫ возникают не вследствие применения антибиотиков на птицефабрике, а предсуществуют в популяции микроорганизмов.
- ➤ 2. Применение антибиотиков в кормлении птицы увеличивает численность ранее возникших в процессе эволюции форм бактерий.
- ➤ 3. Совокупность генов устойчивости к антибиотикам составляет «мировой резистом». это совокупность генов устойчивости к антибиотикам D²Costa et al, 2006
- ▶ 4. Проблема антибиотикоустойчивости это не только проблема кормления птицы, но проблема контроля за микробиомом птицы.

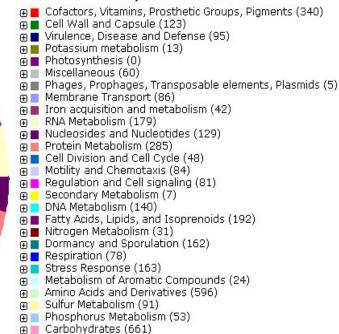
Выращивание птицы без антибиотиков


Возможно только при жестком контроле за микробиомом птицы

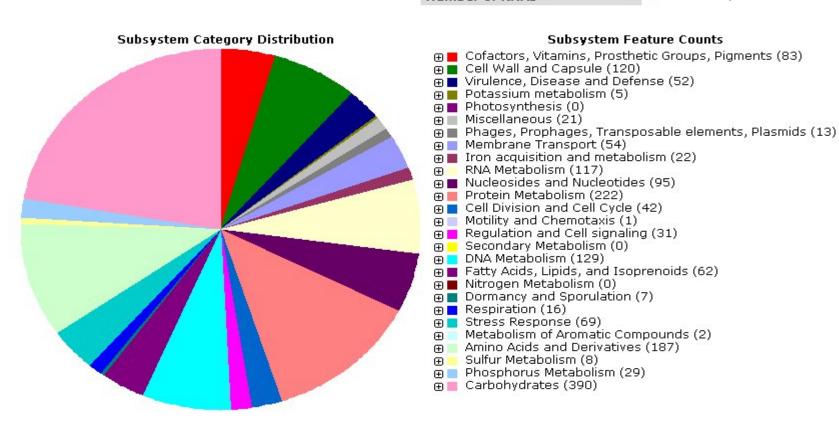
Возможности компании БИОТРОФ для контроля и корректировки микрофлоры кишечника птицы

Собственная молекулярно-генетическая лаборатория. □ Возможность проведения анализов микрофлоры ЖКТ с/х животных и птицы
Собственное производство кормовых добавок:
Ферментативные пробиотики Целлобактерин+ и Целлобактерин-Т.
Водорасворимые пробиотики – Ликвипро, Ликвафид
Мультифункциональный пробиотик – Профорт.
Фитобиотики – Интебио, Интебио Форте
Фитопробиотик – Провитол
Нейтрализаторы микотоксинов – ЗАСЛОН, ЗАСЛОН-ФИТО, ЗАСЛОН2+
 Подкислители – Пробиоцид. Пробиоцид Фито. Пробиоцид Ультра

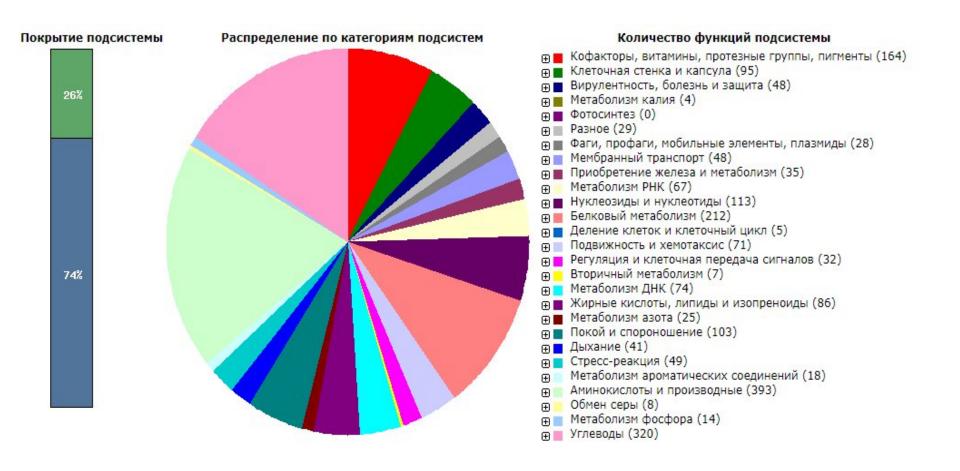
METAБОЛИЧЕСКАЯ СЕТЬ B. megaterium


Углеводный обмен

Organism Overview for Bacillus megaterium (1404.1


Genome	Bacillus megaterium (Taxonomy ID: <u>1404</u>)	1
Domain	Bacteria	
Taxonomy	Bacteria; Bacillus megaterium	
Neighbors	View closest neighbors	
Size	6,113,972	
GC Content	37.5	
N50	822311	
L50	3	
Number of Contigs (with PEGs)	617	
Number of Subsystems	490	
Number of Coding Sequences	6324	
Number of RNAs	158	

Subsystem Feature Counts



МЕТАБОЛИЧЕСКАЯ СЕТЬ E. faecium

Genome	Enterococcus faecium (Taxonomy ID: 362)
Domain	Bacteria
Taxonomy	Bacteria; Enterococcus faecium
Neighbors	View closest neighbors
Size	2,668,596
GC Content	38.3
N50	99727
L50	11
Number of Contigs (with PEGs)	200
Number of Subsystems	332
Number of Coding Sequences	2585
Number of RNAs	86

МЕТАБОЛИЧЕСКАЯ СЕТЬ ШТАММА B. subtilis

Метаболические пути штаммов бактерий Bacillus megaterium и Enterococcus faecium в составе многофункционального пробиотика Профорт

BACILLUS MEGATERIUM

1. СИНТЕЗ АМИНОКИСЛОТ

глицин триптофан серин валин треонин лейцин гистидин изолейцин фенилаланин

5. СИНТЕЗ ОРГАНИЧЕСКИХ КИСЛОТ

янтарная фумаровая масляная

2. СИНТЕЗ γ-АМИНОМАСЛЯНОЙ КИСЛОТЫ

3. СИНТЕЗ БАКТЕРИОЦИНОВ

из группы ансамицинов

4. СИНТЕЗ АНТИОКСИДАНТОВ

глутатион

6. СИНТЕЗ ВИТАМИНОВ

рибофлавин ретинол фолиевая пантотеновая кислота кислота

7. КОЛОНИЗАЦИОННЫЙ ПОТЕНЦИАЛ:

биопленки жгутики

защитные полисахариды

ENTEROCOCCUS FAECIUM

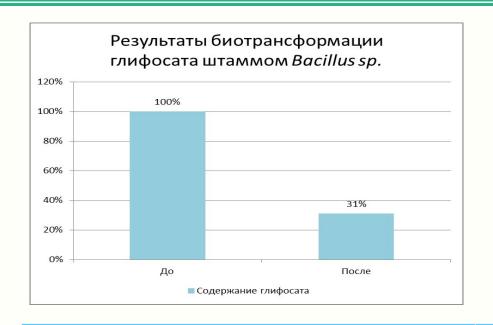
1. СИНТЕЗ АМИНОКИСЛОТ:

лизин метионин цистеин аргинин

2. ЖИРНЫЕ КИСЛОТЫ

с антимикробными свойствами

3. СИНТЕЗ ВИТАМИНОВ


биотин тиамин

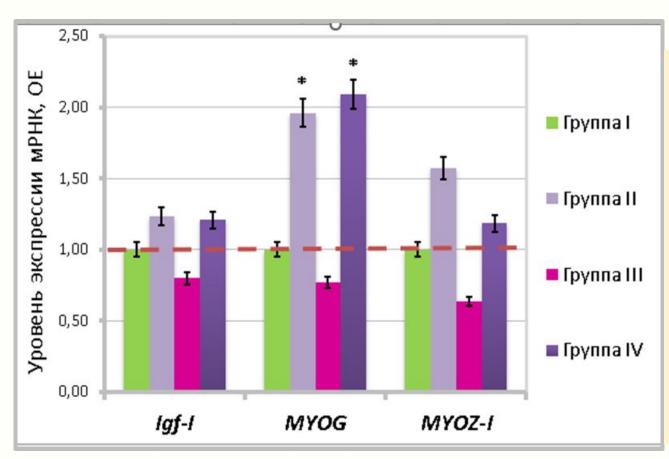
4. БИОДЕСТРУКЦИЯ КСЕНОБИОТИКОВ

БИОТРОФ

микробиология для животноводства

Возможности пробиотиков (Биотрансформация)

Представители *Bacillus sp*. могут использовать глифосат и его метаболиты как источник углерода и фосфора

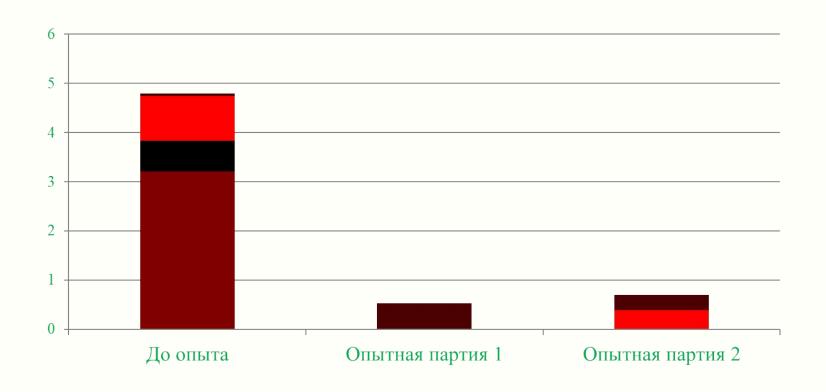

Enterococcus sp. (Профорт)	Bacillus sp. (Профорт-Т)
Снижение количества глифосата на 20- 48% от первоначального	Снижение количества глифосата на 13- 33% от первоначального
	При культивировании на бедной питательной среде показывали рост на порядок по сравнению с контрольной колбой (без глифосата)

МИКРОБИОЛОГИЯ ДЛЯ ЖИВОТНОВОДСТВА

Φ

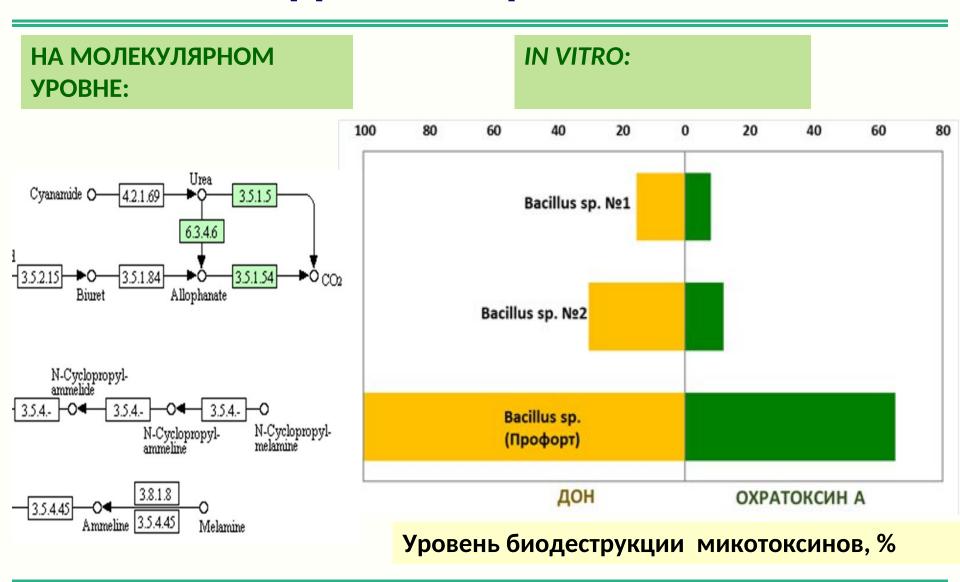
Б

Влияние кормовых факторов на экспрессию генов птицы


I - контрольная,

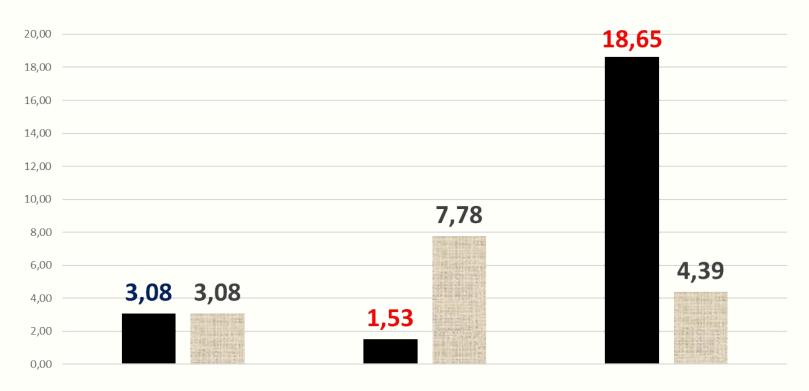
II опытная – антибиотики;

III опытная – антибиотики и глифосат;


IV опытная антибиотики, глифосат и Пробиоцид-Ультра

Применение Профорта позволяет сдерживать развитие патогенных микроорганизмов в ЖКТ цыплятбройлеров

■ Фузобактерии ■ Стафилококки ■ Кампилобактерии ■ Пастереллы

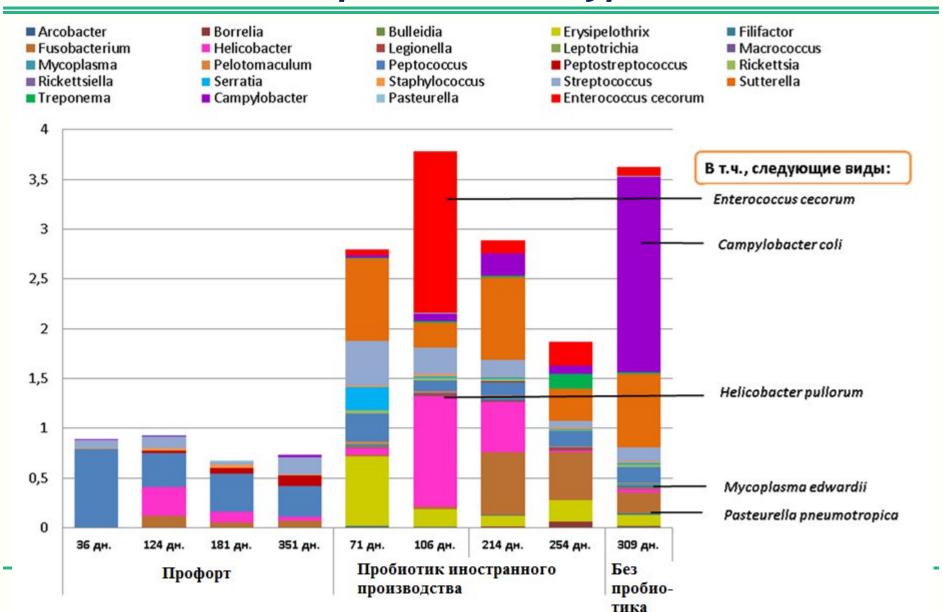

БИОДЕСТРУКЦИЯ ТОКСИНОВ

БИОТРОФ

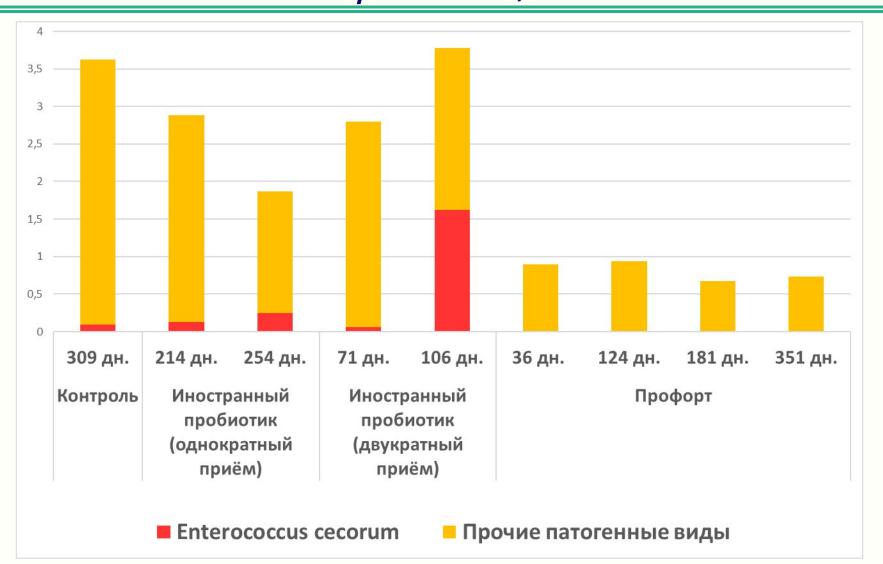
микробиология для животноводства

Сравнительный анализ микрофлоры в комбикорме ПК-8 805 и слепых отростков петуха с применением Профорта

Актинобактерии Энтеробактерии Селеномонады

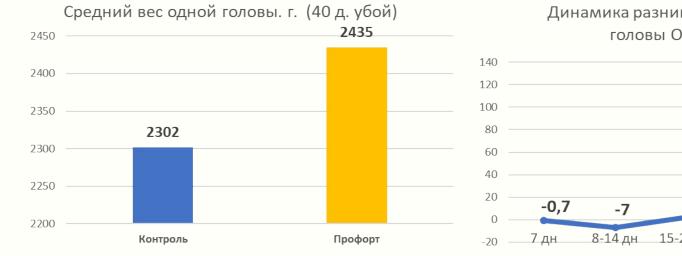

■ Содержимое слепых отростков

■ Комбикорма

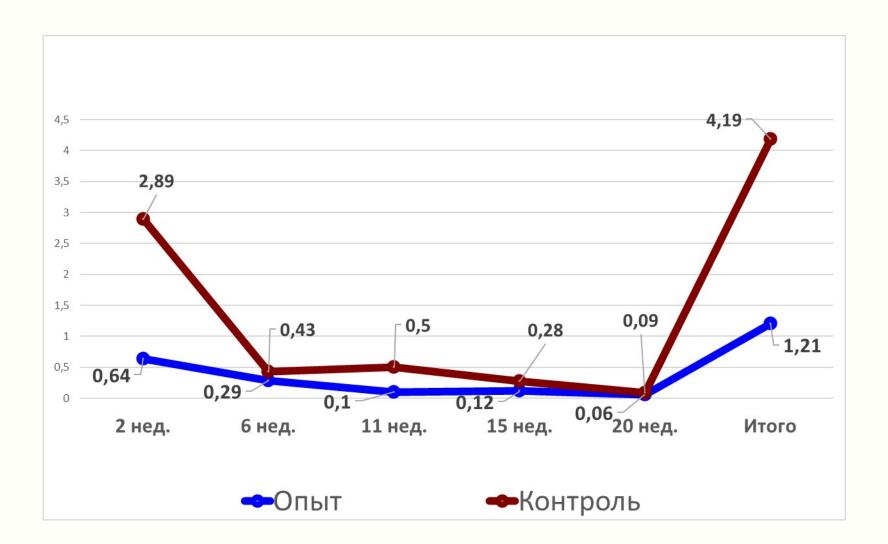

БИОТРОФ

микробиология для животноводства

Суммарное содержание патогенов в слепых отростках ЖКТ кур, %

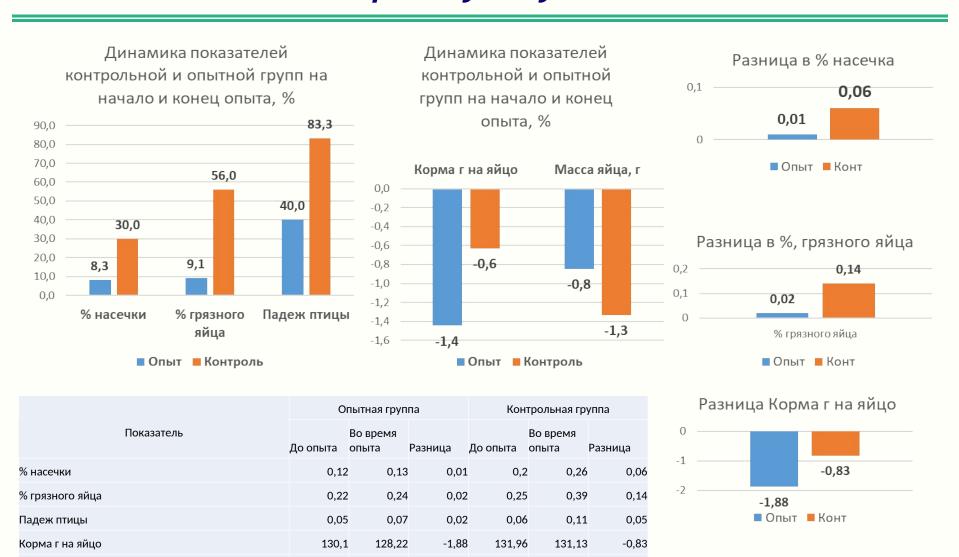


Содержание E.cecorum среди прочих представителей патогенных бактерий в слепых отростках ЖКТ при применении различных пробиотиков, %


Результат опыта применения пробиотика "Профорт" на ПФ "Нагайбакская" СИТНО

			Результат после убоя								
Дата посадки	Группа	Поголовье посадочное	Поголовье забитое	Живой вес,т	Средний вес одной головы, гр(2527)	Конверсия корма, ц к ед	Сред.сут. привес,гр	Дата убоя	Затраты корма на 1 кг привеса, руб	Затраты на т к/к,руб (покупка ПРОФОРТА)	Средняя цена 1т к/к в кормовой программе ,руб
28.04.21-30.04.21	Контроль	270335	253304	587,3	2302	1,64	57,1	06.06.21- 10.06.21	48,47		29892
01.05.21-03.05.21	Опыт	272417	251441	617,0	2435	1,63	59	11.06.21- 13.06.21	47,7	250	29698
Отклонение опыт/контроль		2082	-1863	29,7	133	-0,01	1,9		-0,77	250	-194

Пробиотик Профорт снижает падеж у молодняка курнесушек



Целлобактерин+, положительно влияет на использование зерна нового урожая

Эффективность использования пробиотика Целлобактерин+ на поголовье яичной птицы в период скармливания зерна нового урожая

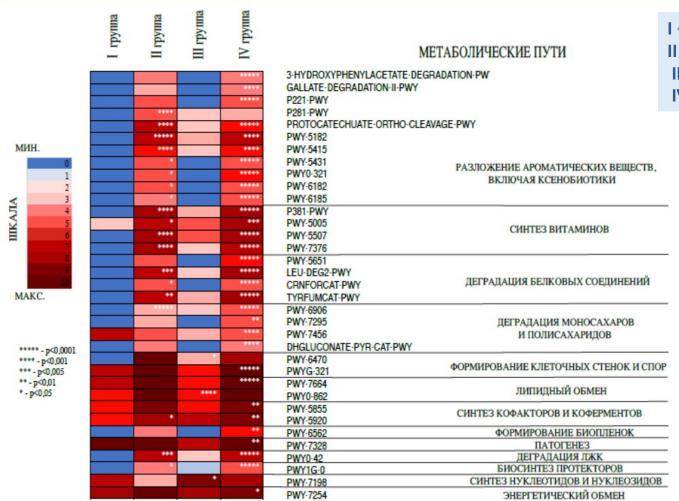
Провитол, снижает негативное воздействие теплового стресса у несушек

60

59,2

58,7

-0.5


59,2

Масса яйца, г

БИОТРОФ

-0,8

Изменение метаболических путей под влиянием T-2 токсина

I – БЕЗ ТОКСИНА, II –T-2, III –T-2 , ЗАСЛОН2+ IV –T-2, ЗАСЛОН2+,ФЕРМЕНТ

Спасибо за внимание!

Большаков владислав пиколаевич

+7(812) 322-85-50

+7 905 217 21 52